Details

Production of Biobutanol from Biomass


Production of Biobutanol from Biomass


1. Aufl.

von: Arindam Kuila, Mainak Mukhopadhyay

173,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 14.11.2023
ISBN/EAN: 9781394172863
Sprache: englisch
Anzahl Seiten: 384

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>PRODUCTION <i>of</i> BIOBUTANOL <i>from</i> BIOMASS</b> <p><b>The book covers all current technologies of lignocellulosic biobutanol production as well as the environmental and socioeconomic impact assessment.</b> <p>N-butanol is a bulk chemical that is used as an industrial solvent and as a component in paint, coatings, and adhesives, among other things. When compared to other biofuels, biobutanol has the advantages of being immiscible in water, having a higher energy content, and having a lower vapor pressure. There are various benefits to producing biobutanol from lignocellulosic biomass. However, there are challenges in producing butanol from lignocellulosic biomass, such as biomass’s complex structure, low butanol yield, and high cost of production, etc. <p>The 13 chapters comprising this book discuss the current technology and prospects of biobutanol production. The first four chapters provide an overview of the current technological status, while the next six chapters discuss different strategies for enhanced biobutanol production from lignocellulosic biomass. The last three chapters present the industrial status and techno-economic analysis of lignocellulosic biobutanol production. <p><b>Audience</b> <p>The book will be useful for researchers in the areas of various branches of life sciences such as environmental biotechnology, bioprocess engineering, renewable energy, chemical engineering, nanotechnology, biotechnology, microbiology.
<p>Preface xiii</p> <p><b>1 Biobutanol: An Overview 1<br /> </b><i>Bidisha Saha, Debalina Bhattacharya and Mainak Mukhopadhyay</i></p> <p>1.1 Introduction 2</p> <p>1.2 General Aspects of Butanol Fermentation 3</p> <p>1.2.1 Microbes That Produce Butanol, Both in Their Wild Type and After Genetic Modification 3</p> <p>1.3 Clostridium Species That Produce ABE and Their Respective Metabolic Characteristics 4</p> <p>1.4 Traits of the Molecularly Developed Strain and the ABE-Producing Clostridia 8</p> <p>1.5 Substrate for ABE Fermentation in Research 9</p> <p>1.6 Problem and Limitation of ABE Fermentation 9</p> <p>1.7 The Development of Butanol from Designed and Modifying Biomass 10</p> <p>1.8 Butanol Production Enhancement Using Advanced Technology 12</p> <p>1.8.1 Batch Fermentation 12</p> <p>1.8.2 Fed-Batch Fermentation 16</p> <p>1.8.3 Continuous Fermentation 17</p> <p>1.8.4 ABE Fermentation with Butanol Elimination 27</p> <p>1.9 Utilizing Pre-Treatment and Saccharification to Produce Butanol from Lignocellulosic Biomass 29</p> <p>1.10 Eliminating CCR to Produce Butanol 29</p> <p>1.11 Butanol Production from Alternative Substrate to Sugar 30</p> <p>1.12 Economics of Biobutanol 31</p> <p>1.13 Future Prospects 33</p> <p>1.14 Conclusion 36</p> <p>References 37</p> <p><b>2 Recent Trends in the Pre-Treatment Process of Lignocellulosic Biomass for Enhanced Biofuel Production 47<br /> </b><i>Nikita Bhati, Shreya and Arun Kumar Sharma</i></p> <p>2.1 Introduction 48</p> <p>2.2 Composition of Lignocellulosic Biomass 49</p> <p>2.3 Insight on the Pre-Treatment of LCB 51</p> <p>2.4 Physical Pre-Treatment Method 54</p> <p>2.4.1 Extrusion Method 54</p> <p>2.4.2 Milling Method 55</p> <p>2.4.3 Ultrasound Method 55</p> <p>2.4.4 Microwave Method 56</p> <p>2.5 Chemical Pre-Treatment Methods 56</p> <p>2.5.1 Alkali Method 56</p> <p>2.5.2 Acid Method 57</p> <p>2.5.3 Organosolv Method 58</p> <p>2.5.4 Ionic Liquids 58</p> <p>2.5.5 Supercritical Fluids 60</p> <p>2.5.6 Cosolvent Enhanced Lignocellulosic Fractionation 61</p> <p>2.5.7 Low Temperature Steep Delignification 62</p> <p>2.5.8 Ammonia Fiber Explosion 62</p> <p>2.5.9 Deep Eutectic Solvents 63</p> <p>2.6 Biological Pre-Treatment Methods 64</p> <p>2.6.1 Combined Biological Pre-Treatment 66</p> <p>2.7 Future Prospects 66</p> <p>2.8 Conclusion 67</p> <p>References 67</p> <p><b>3 Current Status of Enzymatic Hydrolysis of Cellulosic Biomass 77<br /> </b><i>Ram Bhajan Sahu, Janki Pahlwani and Priyanka Singh</i></p> <p>3.1 Introduction 77</p> <p>3.2 Overview on Biofuels and Its Classification 79</p> <p>3.2.1 First-Generation Biofuels 79</p> <p>3.2.1.1 Advantage of First-Generation Biofuel 81</p> <p>3.2.1.2 Limitation of First-Generation Biofuel 81</p> <p>3.2.2 Second-Generation Lignocellulosic Biofuel 82</p> <p>3.2.2.1 Different Types of Feedstocks for Second-Generation Biofuels 82</p> <p>3.2.2.2 Advantages 84</p> <p>3.2.2.3 Disadvantages 84</p> <p>3.2.3 Third-Generation Biofuels 85</p> <p>3.2.3.1 Advantages 85</p> <p>3.2.3.2 Disadvantages 86</p> <p>3.2.4 Fourth-Generation Biofuels 87</p> <p>3.3 Pre-Treatment Methodologies for Hydrolysis of Lignocellulosic Biomass 87</p> <p>3.3.1 Overview 87</p> <p>3.3.2 Structural Analysis for Cellulosic Hydrolysis 90</p> <p>3.3.3 Chemical Process for Pre-Treatment of Lignocellulose 91</p> <p>3.3.3.1 Dilute Acid Pre-Treatment Process 91</p> <p>3.3.4 Ionic Liquid as Pre-Treatment Agent 93</p> <p>3.3.5 Pre-Treatment Process with Alkali Agents 94</p> <p>3.3.6 Pre-Treatment with Ultrasonic Wave 96</p> <p>3.4 Conclusion 97</p> <p>References 98</p> <p><b>4 Present Status and Future Prospect of Butanol Fermentation 105<br /> </b><i>Rashmi Mishra, Aakansha Raj and Satyajit Saurabh</i></p> <p>4.1 Introduction 106</p> <p>4.2 Biobutanol Production 107</p> <p>4.2.1 Microbes and Biobutanol Production 110</p> <p>4.2.2 Substrate for Biobutanol Production 111</p> <p>4.2.3 ABE Fermentation Process 112</p> <p>4.2.4 Recovery of Biobutanol from Fermentation Broth 112</p> <p>4.3 Perspectives 115</p> <p>4.3.1 Substrate 116</p> <p>4.3.2 Alleviate Carbon Catabolite Repression 117</p> <p>4.3.3 Fermentation Improvement 118</p> <p>4.3.4 Strain Development 119</p> <p>4.3.5 Butanol Recovery 122</p> <p>4.4 Conclusion 123</p> <p>References 124</p> <p><b>5 Strategies of Strain Improvement for Butanol Fermentation 133<br /> </b><i>Shreya, Nikita Bhati and Arun Kumar Sharma</i></p> <p>5.1 Introduction 134</p> <p>5.2 Background 136</p> <p>5.3 Microorganism 136</p> <p>5.4 ABE Fermentation 137</p> <p>5.4.1 The Obstacle in ABE Fermentation from Clostridium sp. 138</p> <p>5.5 Selection of Biomass for the Production of Butanol 138</p> <p>5.6 Processes Improvement 140</p> <p>5.7 Strain Improvement 141</p> <p>5.7.1 Mutagenesis 142</p> <p>5.7.1.1 Spontaneous Mutations 142</p> <p>5.7.1.2 Induced Mutation 143</p> <p>5.7.2 Strain Improvement Through Genetic Engineering 144</p> <p>5.7.2.1 Recombinant DNA Technology 148</p> <p>5.7.3 Genetic Engineering in <i>Clostridial</i> sp. for Improved Butanol Tolerance and Its Production 152</p> <p>5.8 Production of Butanol From Bioethanol Through Chemical Processes 153</p> <p>5.9 Advances in Genetically Engineered Microbes can Produce Biobutanol 154</p> <p>5.10 Economics of Biobutanol Fermentation 155</p> <p>5.11 Applications of Butanol 156</p> <p>5.12 Butanol Advantages 157</p> <p>5.13 Conclusion 157</p> <p>References 157</p> <p><b>6 Process Integration and Intensification of Biobutanol Production 167<br /> </b><i>Moumita Bishai</i></p> <p>6.1 Introduction 167</p> <p>6.2 Biobutanol 169</p> <p>6.3 Biobutanol Production and Recovery 170</p> <p>6.4 Process Intensification 172</p> <p>6.4.1 PI Using Bioreactors 172</p> <p>6.4.2 PI Using Membranes 173</p> <p>6.4.3 PI Using Distillation 175</p> <p>6.4.4 PI Using Liquid–Liquid Extraction 176</p> <p>6.4.5 PI Using Adsorption 177</p> <p>6.5 Process Integration 178</p> <p>6.6 Conclusion 184</p> <p>References 185</p> <p><b>7 Bioprocess Development and Bioreactor Designs for Biobutanol Production 191<br /> </b><i>Vitor Paschoal Guanaes de Campos, Johnatt Oliveira, Eduardo Dellossso Penteado, Anthony Andrey Ramalho Diniz, Andrea Komesu and Yasmin Coelho Pio</i></p> <p>7.1 Introduction 191</p> <p>7.2 Steps in Biobutanol Production 193</p> <p>7.3 Feedstock Selection 194</p> <p>7.4 Microbial Strain Selection 196</p> <p>7.5 Solvent Toxicity 196</p> <p>7.6 Fermentation Technologies 197</p> <p>7.7 Butanol Separation Techniques 200</p> <p>7.8 Current Status and Economics 203</p> <p>7.9 Concluding Remarks 204</p> <p>References 204</p> <p><b>8 Advances in Microbial Metabolic Engineering for Increased Biobutanol Production 209<br /> </b><i>Mansi Sharma, Pragati Chauhan, Rekha Sharma and Dinesh Kumar</i></p> <p>8.1 Introduction 210</p> <p>8.2 Metabolic Engineering 212</p> <p>8.2.1 n-Butanol 212</p> <p>8.2.2 Isobutanol 214</p> <p>8.3 Microorganisms for Butanol Production 215</p> <p>8.3.1 The Clostridium Species 218</p> <p>8.3.2 Escherichia coli Species 219</p> <p>8.3.3 Other Bacteria 219</p> <p>8.3.4 Biochemistry and Physiology 220</p> <p>8.4 Metabolic Engineering of Clostridia 221</p> <p>8.4.1 Genetic Tools for Clostridial Metabolic Engineering 222</p> <p>8.4.2 Optimum Selectivity Techniques for Butanol Production 222</p> <p>8.5 Metabolic Engineering of Escherichia coli 224</p> <p>8.6 Microbial Strain 226</p> <p>8.7 Butanol Tolerance Improvement Through Genetic Engineering 227</p> <p>8.8 Economic Viability 228</p> <p>8.9 Problems and Limitations of ABE Fermentation 228</p> <p>8.10 Future Outlook 229</p> <p>8.11 Conclusion 230</p> <p>Acknowledgment 231</p> <p>References 231</p> <p><b>9 Advanced CRISPR/Cas-Based Genome Editing Tools for Biobutanol Production 239<br /> </b><i>Narendra Kumar Sharma, Mansi Srivastava and Yogesh Srivastava</i></p> <p>9.1 Introduction 240</p> <p>9.2 Microorganisms as the Primary Producer of Biobutanol 241</p> <p>9.3 Acetone–Butanol–Ethanol Producing Clostridia and Its Limitations 243</p> <p>9.4 CRISPR–Cas System for Genome Editing 244</p> <p>9.4.1 CRISPR–Cas Mediated Strategies for Genome Editing for Biobutanol Production in Microorganisms 245</p> <p>9.4.1.1 Inhibition of Contentious Pathways 245</p> <p>9.4.1.2 Redirection of the Flux of Metabolic Pathways for Better Solvent Production 247</p> <p>9.4.1.3 Enhancement of Substrate Uptake 248</p> <p>9.4.2 Improvement of the Biofuel Production 248</p> <p>9.4.2.1 Off Targets in CRISPR–Cas System 248</p> <p>9.4.2.2 Using sgRNA Design to Reduce Off Target Effects 249</p> <p>9.4.2.3 Cas9 Modifications to Reduce Off-Target Effects 249</p> <p>9.4.3 Efficient and Modified Biomass “Designed” for Biobutanol Production 250</p> <p>9.5 Conclusion 251</p> <p>References 252</p> <p><b>10 Role of Nanotechnology in Biomass-Based Biobutanol Production 255<br /> </b><i>Pragati Chauhan, Mansi Sharma, Rekha Sharma and Dinesh Kumar</i></p> <p>10.1 Introduction 255</p> <p>10.2 Nanoparticles for Producing of Biofuel 257</p> <p>10.2.1 Magnetic Nanoparticles 257</p> <p>10.2.2 Carbon Nanotubes 258</p> <p>10.2.3 Graphene and Graphene-Derived Nanomaterial for Biofuel 260</p> <p>10.2.4 Other Nanoparticles Applied in Heterogeneous Catalysis for Biofuel Production 262</p> <p>10.3 Factors Affecting the Performance of Nanoparticles in Biofuel’s Manufacturing 263</p> <p>10.3.1 Synthesis Temperature 263</p> <p>10.3.2 Synthesis Pressure 263</p> <p>10.3.3 Synthesis pH 263</p> <p>10.3.4 Size of Nanoparticles 264</p> <p>10.4 Role of Nanomaterials in the Synthesis of Biofuels 264</p> <p>10.5 Utilization of Nanomaterials in Biofuel Production 264</p> <p>10.5.1 Production of Biodiesel Using Nanocatalysts 264</p> <p>10.5.2 Application of Nanomaterials for the Pre-Treatment of Lignocellulosic Biomass 268</p> <p>10.5.3 Application of Nanomaterials in Synthesis of Cellulase and Stability 268</p> <p>10.5.4 Application of Nanomaterials in the Hydrolysis of Lignocellulosic Biomass 269</p> <p>10.5.5 Use of Nanotechnology in Bioethanol Production 269</p> <p>10.5.6 Upgradation of Biofuel by Using Nanotechnology 272</p> <p>10.5.7 Nanoparticle Use in Biorefineries 273</p> <p>10.6 Nanotechnology in Bioethanol/Biobutanol Production 274</p> <p>10.7 Future Perspective 277</p> <p>10.8 Conclusion 278</p> <p>Acknowledgment 279</p> <p>References 279</p> <p><b>11 Commercial Status and Future Scope of Biobutanol Production from Biomass 283<br /> </b><i>Arunima Biswas</i></p> <p>11.1 Introduction 284</p> <p>11.2 Biobutanol—Its Brief Background Story 286</p> <p>11.3 Commercial Aspect of Biobutanol Production from Biomass: Strength Analysis 287</p> <p>11.4 Commercial Aspect of Biobutanol Production from Biomass: Weakness Analysis 290</p> <p>11.5 Commercial Aspect of Biobutanol Production from Biomass: Opportunities and Challenges 293</p> <p>11.6 Discussion: Evaluating the Future Prospects of Biobutanol 296</p> <p>Acknowledgment 298</p> <p>References 298</p> <p><b>12 Current Status and Challenges of Biobutanol Production from Biomass 301<br /> </b><i>Ram Bhajan Sahu and Priyanka Singh</i></p> <p>12.1 Introduction 301</p> <p>12.2 Overview of Biofuel 303</p> <p>12.2.1 History for Biofuel 304</p> <p>12.3 Classification of Bioethanol 306</p> <p>12.3.1 First-Generation of Ethanol 306</p> <p>12.3.2 Second-Generation Bioethanol 308</p> <p>12.3.3 Third-Generation Bioethanol 309</p> <p>12.3.4 Fourth-Generation Bioethanol 309</p> <p>12.4 Production of Biobutanol 309</p> <p>12.4.1 Pre-Treatment Stages 310</p> <p>12.4.2 Enzymatic Hydrolysis Stage 312</p> <p>12.4.3 Fermentation Stage 312</p> <p>12.4.4 Separation Stage 312</p> <p>12.4.5 Production of Butanol from Genetically Improved Strains 313</p> <p>12.5 Conclusion 317</p> <p>References 318</p> <p><b>13 Biobutanol: A Promising Liquid Biofuel 323<br /> </b><i>Aakansha Raj, Tasnim Arfi and Satyajit Saurabh</i></p> <p>13.1 Introduction 323</p> <p>13.1.1 First-Generation Biofuels 324</p> <p>13.1.2 Second-Generation Biofuels 326</p> <p>13.1.3 Third-Generation Biofuels 326</p> <p>13.1.4 Fourth-Generation Biofuels 326</p> <p>13.2 Biobutanol 327</p> <p>13.3 Biorefinery and Biobutanol Production 329</p> <p>13.3.1 Substrates and Their Pre-Treatment for Biobutanol Production 329</p> <p>13.3.1.1 Substrate 329</p> <p>13.3.1.2 Pre-Treatment of Substrates 333</p> <p>13.3.2 Microorganisms 342</p> <p>13.3.3 Acetone–Butanol–Ethanol Fermentation 343</p> <p>13.4 Commercial Importance of Biobutanol 343</p> <p>13.5 Conclusion 346</p> <p>Abbreviations 346</p> <p>References 347</p> <p>Index 355</p>
<p><b>Arindam Kuila</b> is an assistant professor at the Department of Bioscience & Biotechnology, Banasthali Vidyapith, Rajasthan, India. Previously, he worked as a research associate at Hindustan Petroleum Green R&D Centre, Bangalore, India. He gained his PhD from the Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, India in 2013, in the area of lignocellulosic biofuel production. He has co-authored 20+ peer-reviewed research papers and seven review papers, edited four books and eight book chapters, and filed five patents. <p><b>Mainak Mukhopadhyay, PhD,</b> is an assistant professor in the Department of Biotechnology, Swami Vivekananda University, Kolkata, West Bengal, India. He obtained his PhD from the Indian Institute of Technology in Kharagpur, India in 2014. His research interests include enzymology, nanobiotechnology, and biomass conversion technology. He was awarded Petrotech Research Fellowship in 2008. In 2016, he was awarded the Early Career Research Award from DST-SERB. He has co-authored 15 peer-reviewed papers and three review papers, edited one book and 15 book chapters, and filed three patents.
<p><b>The book covers all current technologies of lignocellulosic biobutanol production as well as the environmental and socioeconomic impact assessment.</b> <p>N-butanol is a bulk chemical that is used as an industrial solvent and as a component in paint, coatings, and adhesives, among other things. When compared to other biofuels, biobutanol has the advantages of being immiscible in water, having a higher energy content, and having a lower vapor pressure. There are various benefits to producing biobutanol from lignocellulosic biomass. However, there are challenges in producing butanol from lignocellulosic biomass, such as biomass’s complex structure, low butanol yield, and high cost of production, etc. <p>The 13 chapters comprising this book discuss the current technology and prospects of biobutanol production. The first four chapters provide an overview of the current technological status, while the next six chapters discuss different strategies for enhanced biobutanol production from lignocellulosic biomass. The last three chapters present the industrial status and techno-economic analysis of lignocellulosic biobutanol production. <p><b>Audience</b> <p>The book will be useful for researchers in the areas of various branches of life sciences such as environmental biotechnology, bioprocess engineering, renewable energy, chemical engineering, nanotechnology, biotechnology, microbiology.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €