Details

Ice Adhesion


Ice Adhesion

Mechanism, Measurement, and Mitigation
Adhesion and Adhesives: Fundamental and Applied Aspects 1. Aufl.

von: K. L. Mittal, Chang-Hwan Choi

217,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 21.10.2020
ISBN/EAN: 9781119640530
Sprache: englisch
Anzahl Seiten: 704

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies.</b></p> <p>The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition.</p> <p>This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.</p>
<p>Preface xv</p> <p><b>Part 1: Fundamentals of Ice Formation and Characterization 1</b></p> <p><b>1 Factors Influencing the Formation, Adhesion, and Friction of Ice 3<br /></b><i>Michael J. Wood and Anne-Marie Kietzig</i></p> <p>1.1 A Brief History of Man and Ice 4</p> <p>1.1.1 Ice on Earth 4</p> <p>1.1.2 Man is Carved of Ice 5</p> <p>1.1.3 Modern Man Carves Ice 8</p> <p>1.2 A Thermodynamically Designed Anti-Icing Surface 13</p> <p>1.2.1 Homogeneous Classical Nucleation Theory 14</p> <p>1.2.2 Heterogeneous Classical Nucleation Theory 16</p> <p>1.2.3 Predicting Delays in Ice Nucleation 20</p> <p>1.2.4 Predicting Ice Nucleation Temperatures 22</p> <p>1.3 The Adhesion of Ice to Surfaces 25</p> <p>1.3.1 Wetting and Icing of Ideal Surfaces 26</p> <p>1.3.2 Wetting of Real Surfaces 30</p> <p>1.3.3 Ice Adhesion to Real Surfaces 32</p> <p>1.4 The Sliding Friction of Ice 38</p> <p>1.4.1 Ice Friction Regimes 39</p> <p>1.4.2 The Origin of Ice’s Liquid-Like Layer 42</p> <p>1.4.3 Parameters Affecting The Friction Coefficient of Ice 43</p> <p>1. 5 Summary 45</p> <p>References 46</p> <p><b>2 Water and Ice Nucleation on Solid Surfaces 55<br /></b><i>Youmin Hou, Hans-Jürgen Butt and Michael Kappl</i></p> <p>2.1 Introduction 55</p> <p>2.2 Classical Nucleation Theory 57</p> <p>2.2.1 Homogeneous Nucleation Rate 59</p> <p>2.2.1.1 Homogeneous Nucleation of Water Droplets and Ice from Vapor 60</p> <p>2.2.1.2 Homogeneous Ice Nucleation in Supercooled Water 61</p> <p>2.2.2 Heterogeneous Nucleation Rate 63</p> <p>2.2.2.1 Heterogeneous Water Nucleation on Solid Surfaces 63</p> <p>2.2.3 Spatial Control of Water Nucleation on Nanoengineered Surfaces 68</p> <p>2.2.4 Heterogeneous Ice Nucleation in Supercooled Water 71</p> <p>2.3 Prospects 76</p> <p>2.4 Summary 78</p> <p>Acknowledgement 79</p> <p>References 79</p> <p><b>3 Physics of Ice Nucleation and Growth on a Surface 87<br /></b><i>Alireza Hakimian, Sina Nazifi and Hadi Ghasemi</i></p> <p>3.1 Ice Nucleation 88</p> <p>3.2 Ice Growth 94</p> <p>3.2.1 Scenario I: Droplet in an Environment without Airflow 95</p> <p>3.2.2 Scenario II: Droplet in an Environment with External Airflow 99</p> <p>3.3 Ice Bridging Phenomenon 105</p> <p>3.4 Summary 108</p> <p>References 109</p> <p><b>4 Condensation Frosting 111<br /></b><i>S. Farzad Ahmadi and Jonathan B. Boreyko</i></p> <p>4.1 Introduction 111</p> <p>4.2 Why Supercooled Condensation? 114</p> <p>4.3 Inter-Droplet Freeze Fronts 117</p> <p>4.4 Dry Zones and Anti-Frosting Surfaces 124</p> <p>4.5 Summary and Future Directions 129</p> <p>References 131</p> <p><b>5 The Role of Droplet Dynamics in Condensation Frosting 135<br /></b><i>Amy Rachel Betz</i></p> <p>5.1 Introduction 135</p> <p>5.2 Nucleation 137</p> <p>5.3 Growth 138</p> <p>5.4 Coalescence and Sweeping 139</p> <p>5.5 Regeneration or Re-Nucleation 146</p> <p>5.6 Inception of Freezing 147</p> <p>5.7 Freezing Front Propagation 149</p> <p>5.8 Ice Bridging 150</p> <p>5.9 Frost Growth and Densification 153</p> <p>5.10 Concluding Discussion 155</p> <p>Acknowledgments 156</p> <p>References 156</p> <p><b>6 Defrosting Properties of Structured Surfaces 161<br /></b><i>S. Farzad Ahmadi and Jonathan B. Boreyko</i></p> <p>6.1 Introduction: Defrosting on Smooth Surfaces 162</p> <p>6.2 Defrosting Heat Exchangers 167</p> <p>6.3 Dynamic Defrosting on Micro-Grooved Surfaces 170</p> <p>6.4 Dynamic Defrosting on Liquid-Impregnated Surfaces 172</p> <p>6.5 Dynamic Defrosting on Nanostructured Superhydrophobic Surfaces 176</p> <p>6.6 Summary and Future Directions 179</p> <p>References 181</p> <p><b>Part 2: Ice Adhesion and Its Measurement 187</b></p> <p><b>7 On the Relationship between Surface Free Energy and Ice Adhesion of Flat Anti-Icing Surfaces 189<br /></b><i>Salih Ozbay and H. Yildirim Erbil</i></p> <p>7.1 Introduction 190</p> <p>7.2 Types of Ice Formation 193</p> <p>7.2.1 Ice Formation from Supercooled Drops on a Surface 193</p> <p>7.2.2 Frost Formation from the Existing Humidity in the Medium 194</p> <p>7.3 Work of Adhesion, Wettability and Surface Free Energy 195</p> <p>7.4 Factors Affecting Ice Adhesion Strength and Its Standardization 197</p> <p>7.5 Effect of Water Contact Angle and Surface Free Energy Parameters on Ice Adhesion Strength 199</p> <p>7.6 Summary 205</p> <p>References 206</p> <p><b>8 Metrology of Ice Adhesion 217<br /></b><i>Alireza Hakimian, Sina Nazifi and Hadi Ghasemi</i></p> <p>8.1 Theory of Ice Adhesion to a Surface 218</p> <p>8.2 Centrifugal Force Method 221</p> <p>8.3 Peak Force Method 224</p> <p>8.4 Tensile Force Method 230</p> <p>8.5 Standard Procedure for Ice Adhesion Measurement 231</p> <p>8.6 Summary 233</p> <p>References 233</p> <p><b>9 Tensile and Shear Test Methods for Quantifying the Ice Adhesion Strength to a Surface 237<br /></b><i>Alexandre Laroche, Maria Jose Grasso, Ali Dolatabadi and Elmar Bonaccurso</i></p> <p>Glossary 237</p> <p>9.1 Introduction 239</p> <p>9.2 About Ice, Impact Ice, and Ice Adhesion Tests 241</p> <p>9.2.1 Relationship between Wettability and Ice Adhesion 241</p> <p>9.2.2 A Simple Picture of Condition-Dependent Ice Growth 246</p> <p>9.2.3 Factors Affecting Ice Adhesion Strength 248</p> <p>9.3 Review of Ice Adhesion Test Methods 253</p> <p>9.3.1 Shear Tests 257</p> <p>9.3.1.1 Pusher and Lap Shear Tests 257</p> <p>9.3.1.2 Spinning Test Rigs 263</p> <p>9.3.1.3 Vibrating Cantilever Tests 269</p> <p>9.3.2 Tensile Tests 274</p> <p>9.4 Prospects 279</p> <p>9.5 Summary 279</p> <p>Acknowledgements 280</p> <p>References 280</p> <p><b>10 Comparison of Icephobic Materials through Interlaboratory Studies 285<br /></b><i>Sigrid Rønneberg, Caroline Laforte, Jianying He and Zhiliang Zhang</i></p> <p>10.1 Introduction 286</p> <p>10.2 Icephobicity and Anti-Icing Surfaces 288</p> <p>10.3 Ice Formation and Properties 289</p> <p>10.3.1 Definitions of Ice 290</p> <p>10.3.2 The Effect of Ice Type on Ice Adhesion Strength 294</p> <p>10.4 Testing Ice Adhesion 299</p> <p>10.4.1 Description of Selected Common Ice Adhesion Tests 299</p> <p>10.4.2 Adhesion Reduction Factor 303</p> <p>10.4.3 Effect of Experimental Parameters 305</p> <p>10.4.3.1 Temperature 305</p> <p>10.4.3.2 Ice Sample Size 307</p> <p>10.4.3.3 Force Probe Placement and Loading Rate 308</p> <p>10.5 Comparing Low Ice Adhesion Surfaces with Interlaboratory Tests 310</p> <p>10.5.1 The Need for Comparability 310</p> <p>10.5.2 Interlaboratory Test Procedure 311</p> <p>10.5.3 Interlaboratory Test Results 314</p> <p>10.5.4 Properties of a Future Standard and Reference 317</p> <p>10.6 Concluding Remarks 319</p> <p>References 320</p> <p><b>Part 3: Methods to Mitigate Ice Adhesion 325</b></p> <p><b>11 Mechanisms of Surface Icing and Deicing Technologies 327<br /></b><i>Ilker S. Bayer</i></p> <p>11.1 A Brief Description of Icing and Ice Adhesion 328</p> <p>11.2 Examples of Mathematical Modeling of Icing on Various Static or Moving Surfaces 331</p> <p>11.3 New Applications of Common Deicing Compounds 334</p> <p>11.4 Plasma-Based Deicing Systems 336</p> <p>11.5 Functional Super (Hydrophilic) or Wettable Polymeric Coatings to Resist Icing 340</p> <p>11.6 Nanoscale Carbon Coatings with/without Resistive Heating 345</p> <p>11.7 Antifreeze Proteins 349</p> <p>11.8 Summary and Perspectives 354</p> <p>References 355</p> <p><b>12 Icephobicities of Superhydrophobic Surfaces 361<br /></b><i>Dong Song, Youhua Jiang, Mohammad Amin Sarshar and Chang-Hwan Choi</i></p> <p>12.1 Introduction 362</p> <p>12.2 Anti-Icing Property of Superhydrophobic Surfaces under Dynamic Flow Conditions 369</p> <p>12.2.1 Preparation of Superhydrophobic Surfaces 369</p> <p>12.2.2 Anti-Icing Test under Dynamic Flow Conditions 369</p> <p>12.2.3 Results and Discussion 372</p> <p>12.3 Analytical Models of Depinning Force on Superhydrophobic Surfaces 374</p> <p>12.4 Analytical Models of Contact Angles on Superhydrophobic Surfaces 378</p> <p>12.5 De-Icing Property of Superhydrophobic Surfaces under Static Conditions 381</p> <p>12.5.1 De-Icing Test under Static Conditions 381</p> <p>12.5.2 Results and Discussion 382</p> <p>12.6 Conclusions 384</p> <p>Acknowledgments 384</p> <p>References 384</p> <p><b>13 Ice Adhesion and Anti-Icing Using Microtextured Surfaces 389<br /></b><i>Mool C. Gupta and Alan Mulroney</i></p> <p>13.1 Introduction 389</p> <p>13.1.1 Background 389</p> <p>13.1.2 State-of-the-Art 392</p> <p>13.2 Microtextured Surfaces: Wetting Characteristics and Anti-Icing Properties 393</p> <p>13.2.1 Wetting on Microtextured Surfaces 393</p> <p>13.2.2 Wetting and Icephobic Surfaces 396</p> <p>13.2.3 Ice Adhesion to Microtextured Surfaces 398</p> <p>13.3 Measurement Methods for Ice Adhesion 398</p> <p>13.3.1 Force Measurement Techniques 399</p> <p>13.3.2 Contact Area Measurements 400</p> <p>13.3.3 Measurement Variance and Error 401</p> <p>13.4 Fabrication Methods for Microtextured Surfaces 402</p> <p>13.4.1 Micro/Nanoparticle Coatings 402</p> <p>13.4.2 Chemical Etching 403</p> <p>13.4.3 Laser Ablation Techniques 404</p> <p>13.4.4 Embossing Techniques 406</p> <p>13.5 Microtextured Surfaces and Anti-Icing Applications 407</p> <p>13.5.1 Solar 408</p> <p>13.5.2 Wind 409</p> <p>13.5.3 Aircraft 410</p> <p>13.5.4 HVAC 410</p> <p>13.6 Future Outlook 411</p> <p>Acknowledgments 411</p> <p>References 412</p> <p><b>14 Icephobic Surfaces: Features and Challenges 417<br /></b><i>Michael Grizen and Manish K. Tiwari</i></p> <p>14.1 Introduction 418</p> <p>14.2 Features and Challenges in Rational Fabrication of Icephobic Surfaces 418</p> <p>14.3 Wettability 420</p> <p>14.4 Surface Engineering 422</p> <p>14.4.1 Repelling Impacting Droplets 422</p> <p>14.4.1.1 Drop Impact Characterization 422</p> <p>14.4.1.2 Enhancing Surface Resistance against Drop Impact 425</p> <p>14.4.1.3 Additional Factors Affecting Supercooled Droplet Impacts 431</p> <p>14.4.2 Freezing Delay 432</p> <p>14.4.2.1 Delaying Freezing of a Droplet 432</p> <p>14.4.2.2 Delaying Frost Formation 437</p> <p>14.4.3 Ice Adhesion 443</p> <p>14.4.3.1 Theory 443</p> <p>14.4.3.2 Strategies to Lower Ice Adhesion Strength 447</p> <p>14.5 De-Icing 454</p> <p>14.5.1 Electro- and Photo-Thermal 455</p> <p>14.5.2 Magneto- and Photo-Thermal 456</p> <p>14.6 Summary 457</p> <p>References 458</p> <p><b>15 Bio-Inspired Anti-Icing Surface Materials 467<br /></b><i>Shuwang Wu, Yichen Yan, Dong Wu, Zhiyuan He and Ximin He</i></p> <p>Glossary of Symbols 468</p> <p>Glossary of Abbreviations 468</p> <p>15.1 Introduction 469</p> <p>15.2 Depressing Ice Nucleation 471</p> <p>15.3 Retarding Ice Propagation 474</p> <p>15.4 Reducing Ice Adhesion 479</p> <p>15.5 All-in-One Anti-Icing Materials 482</p> <p>15.6 Summary and Conclusions 485</p> <p>References 486</p> <p><b>16 Testing the Durability of Anti-Icing Coatings 495<br /></b><i>Sergei A. Kulinich, Denis Masson, Xi-Wen Du and Alexandre M. Emelyanenko</i></p> <p>16.1 Introduction 496</p> <p>16.2 Icing/Deicing Tests and Ice Types 497</p> <p>16.2.1 Evaluating the Durability of Surfaces 498</p> <p>16.2.2 Rough Superhydrophobic Surfaces and their Durability 506</p> <p>16.2.3 Smooth Hydrophobic Surfaces and their Durability 511</p> <p>16.3 Concluding Remarks 513</p> <p>References 514</p> <p><b>17 Durability Assessment of Icephobic Coatings 521<br /></b><i>Alireza Hakimian, Sina Nazifi and Hadi Ghasemi</i></p> <p>17.1 Introduction 522</p> <p>17.2 UV-Induced Degradation 523</p> <p>17.2.1 Autocatalytic Photo-Induced Degradation Mechanism 523</p> <p>17.2.2 Factors Affecting UV Resistance 524</p> <p>17.2.3 UV-Induced Photo-Oxidation Prevention 525</p> <p>17.3 Hydrolytic Degradation of Coatings 527</p> <p>17.4 Atmospheric Conditions and Changes in Coating Performance 529</p> <p>17.5 Mechanical Durability of Coating 532</p> <p>17.5.1 Cracking 533</p> <p>17.5.2 Erosion of Coatings 535</p> <p>17.5.3 Abrasion 536</p> <p>17.6 Methods for Durability Assessment of an Icephobic Coating 539</p> <p>17.7 Summary 542</p> <p>References 543</p> <p><b>18 Experimental Investigations on Bio-Inspired Icephobic Coatings for Aircraft Inflight Icing Mitigation 547<br /></b><i>Yang Liu and Hui Hu</i></p> <p>18.1 Introduction About Aircraft Icing Phenomena 548</p> <p>18.2 Impact Icing Pertinent to Aircraft Icing vs. Conventional Frosting or Static Icing 551</p> <p>18.3 State-of-the-Art Bio-Inspired Icephobic Coatings 553</p> <p>18.3.1 Superhydrophobic Surfaces with Micro-/Nano-Scale Textures 555</p> <p>18.3.2 Slippery Liquid-Infused Porous Surfaces 557</p> <p>18.3.3 Icephobic Soft Materials with Ultra-Low Ice Adhesion Strength and Good Mechanical Durability 558</p> <p>18.4 Comparison of Ice Adhesion Strengths of Different Bio-Inspired Icephobic Coatings 560</p> <p>18.5 Durability of the Bio-Inspired Icephobic Coatings under High-Speed Droplet Impacting 562</p> <p>18.6 Icing Tunnel Testing to Evaluate the Effectiveness of the Icephobic Coatings for Impact Icing Mitigation 566</p> <p>18.7 Summary 569</p> <p>Acknowledgments 571</p> <p>References 571</p> <p><b>19 Effect of and Protection from Ice Accretion on Aircraft 577<br /></b><i>Zhenlong Wu and Qiang Wang</i></p> <p>Glossary 577</p> <p>19.1 Introduction 578</p> <p>19.2 Fundamental Icing Parameters 579</p> <p>19.2.1 Droplet Diameter 579</p> <p>19.2.2 Liquid Water Content 580</p> <p>19.2.3 Ambient Icing Temperature 581</p> <p>19.3 Types of Ice on Aircraft 581</p> <p>19.3.1 Rime Ice 581</p> <p>19.3.2 Glaze Ice 582</p> <p>19.3.3 Mixed Ice 583</p> <p>19.4 Aircraft Icing Effects 584</p> <p>19.4.1 Iced Aerodynamics 584</p> <p>19.4.1.1 Drag Rise 584</p> <p>19.4.1.2 Lift Reduction 586</p> <p>19.4.1.3 Moment Variation 589</p> <p>19.4.1.4 Separation Bubble Formation 590</p> <p>19.4.1.5 Boundary Layer Thickening 592</p> <p>19.4.2 Iced Flight Mechanics 594</p> <p>19.4.2.1 Flight Performance Disruption 594</p> <p>19.4.2.2 Stability and Control Degradation 596</p> <p>19.5 Sensing of and Protection from Aircraft Icing 596</p> <p>19.5.1 Sensing of Ice Accretion 596</p> <p>19.5.2 De-Icing and Anti-Icing 598</p> <p>19.5.3 Envelope Protection 599</p> <p>19.5.4 Control Reconfiguration 601</p> <p>19.6 Summary 603</p> <p>Funding and Acknowledgement 603</p> <p>References 603</p> <p><b>20 Numerical Modeling and Its Application to Inflight Icing 607<br /></b><i>Kwanjung Yee</i></p> <p>20.1 Introduction 608</p> <p>20.2 Aircraft Icing 609</p> <p>20.2.1 Icing Environment 609</p> <p>20.2.1.1 Cloud Formation 609</p> <p>20.2.1.2 Cloud Classification 609</p> <p>20.2.1.3 Icing Cloud 613</p> <p>20.2.1.4 Icing Envelope 615</p> <p>20.2.2 Icing Mechanism 617</p> <p>20.2.2.1 Fundamentals of Icing 617</p> <p>20.2.2.2 Characterization of Ice Shape 620</p> <p>20.2.2.3 Critical Issues in Icing Physics 621</p> <p>20.3 Numerical Technique for Inflight Icing 625</p> <p>20.3.1 Composition of the Inflight Icing Code 626</p> <p>20.3.2 Flow Analysis Solver 628</p> <p>20.3.2.1 Inviscid Flow Solver 628</p> <p>20.3.2.2 Reynolds-Averaged Navier-Stokes (RANS) Equation 631</p> <p>20.3.3 Droplet Trajectory Module 635</p> <p>20.3.3.1 Lagrangian Approach 635</p> <p>20.3.3.2 Eulerian Approach 637</p> <p>20.3.4 Thermodynamic Module 639</p> <p>20.3.4.1 Messinger Model 639</p> <p>20.3.4.2 Extended Messinger Model (Stefan Equation) 641</p> <p>20.3.4.3 Shallow Water Icing Model (SWIM) 642</p> <p>20.3.5 Ice Growth Module 644</p> <p>20.3.6 Application of the Numerical Simulation 645</p> <p>20.3.6.1 2D Airfoil 646</p> <p>20.3.6.2 3D DLR-F6 Configuration 647</p> <p>20.3.6.3 Rotorcraft Fuselage 649</p> <p>20.4 Numerical Simulation of Icing Protection System (IPS) 651</p> <p>20.4.1 IPS 651</p> <p>20.4.2 Simulation for IPS 653</p> <p>20.4.3 Thermal IPS Simulation Analysis 655</p> <p>20.4.3.1 Electro-Thermal IPS Simulation 655</p> <p>20.4.3.2 Water Film Analysis 656</p> <p>20.5 Numerical Issues in the Inflight Icing Code 658</p> <p>20.5.1 Analysis of the Surface Roughness 658</p> <p>20.5.2 Analysis of the Transition in the Boundary Layer Problem 659</p> <p>20.5.3 Analysis of the Rotor Blade Icing Problem 660</p> <p>20.5.4 Analysis of the Uncertainty Qualification (UQ) 661</p> <p>20.6 Summary 662</p> <p>References 663</p>
<p><b>Kashmiri Lal Mittal</b> was employed by the IBM Corporation from 1972 through 1993. Currently, he is teaching and consulting worldwide in the broad areas of adhesion as well as surface cleaning. He has received numerous awards and honors including the title of doctor <i>honoris causa</i> from Maria Curie- Skłodowska University, Lublin, Poland. He is the editor of more than 135 books dealing with adhesion measurement, adhesion of polymeric coatings, polymer surfaces, adhesive joints, adhesion promoters, thin films, polyimides, surface modification surface cleaning, and surfactants. Dr. Mittal is also the Founding Editor of the journal <i>Reviews of Adhesion and Adhesives</i>. <p><b>Chang-Hwan Choi</b> is a professor in the Department of Mechanical Engineering at the Stevens Institute of Technology. He acquired his BS (1995) and MS (1997) in Mechanical & Aerospace Engineering from Seoul National University in Korea. He worked as a researcher at Korea Aerospace Research Institute before he received his PhD (2006) in Mechanical Engineering from the University of California at Los Angeles (UCLA), specializing in MEMS/Nanotechnology and minoring in Fluid Mechanics and Biomedical Engineering. Areas of his research interest include surface engineering and interfacial phenomena. He has published more than 100 peer-reviewed journal articles and been awarded one patent.
<p><b>This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies.</b> <p>The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. <p>This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing. <p><b>Audience</b> <p>This book will be of much interest to glaciologists, meteorologists, surface scientists, materials scientists, nanotechnologists, coatings technologists, and those concerned with the detrimental effects of ice adhesion in the aviation, shipping, railway, power transmission, wind turbine, and refrigeration industries. Also, physicists interested in understanding the fundamentals of ice formation should find this book very useful.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €