Details

Computer Aided Design and Manufacturing


Wiley-ASME Press Series 1. Aufl.

von: Zhuming Bi, Xiaoqin Wang

110,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 04.02.2020
ISBN/EAN: 9781119534242
Sprache: englisch
Anzahl Seiten: 640

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Broad coverage of digital product creation, from design to manufacture and process optimization</b></p> <p>This book addresses the need to provide up-to-date coverage of current CAD/CAM usage and implementation. It covers, in one source, the entire design-to-manufacture process, reflecting the industry trend to further integrate CAD and CAM into a single, unified process. It also updates the computer aided design theory and methods in modern manufacturing systems and examines the most advanced computer-aided tools used in digital manufacturing.</p> <p><i>Computer Aided Design and Manufacturing </i>consists of three parts. The first part on Computer Aided Design (CAD) offers the chapters on Geometric Modelling; Knowledge Based Engineering; Platforming Technology; Reverse Engineering; and Motion Simulation. The second part on Computer Aided Manufacturing (CAM) covers Group Technology and Cellular Manufacturing; Computer Aided Fixture Design; Computer Aided Manufacturing; Simulation of Manufacturing Processes; and Computer Aided Design of Tools, Dies and Molds (TDM). The final part includes the chapters on Digital Manufacturing; Additive Manufacturing; and Design for Sustainability. The book is also featured for</p> <ul> <li>being uniquely structured to classify and align engineering disciplines and computer aided technologies from the perspective of the design needs in whole product life cycles,</li> <li>utilizing a comprehensive Solidworks package (add-ins, toolbox, and library) to showcase the most critical functionalities of modern computer aided tools, and</li> <li>presenting real-world design projects and case studies so that readers can gain CAD and CAM problem-solving skills upon the CAD/CAM theory.</li> </ul> <p><i>Computer Aided Design and Manufacturing </i>is an ideal textbook for undergraduate and graduate students in mechanical engineering, manufacturing engineering, and industrial engineering. It can also be used as a technical reference for researchers and engineers in mechanical and manufacturing engineering or computer-aided technologies.</p>
<p>Series Preface xvii</p> <p>Preface xix</p> <p>About the Companion Website xxi</p> <p><b>1 Computers in Manufacturing </b><b>1</b></p> <p>1.1 Introduction 1</p> <p>1.1.1 Importance of Manufacturing 1</p> <p>1.1.2 Scale and Complexity of Manufacturing 2</p> <p>1.1.3 Human Roles in Manufacturing 4</p> <p>1.1.4 Computers in Advanced Manufacturing 6</p> <p>1.2 Computer Aided Technologies (CATs) 7</p> <p>1.3 CATs for Engineering Designs 10</p> <p>1.3.1 Engineering Design in a Manufacturing System 10</p> <p>1.3.2 Importance of Engineering Design 10</p> <p>1.3.3 Types of Design Activities 12</p> <p>1.3.4 Human Versus Computers 13</p> <p>1.3.5 Human and Machine Interactions 14</p> <p>1.4 Architecture of Computer Aided Systems 15</p> <p>1.4.1 Hardware Components 15</p> <p>1.4.2 Computer Software Systems 17</p> <p>1.4.3 Servers, Networking, and Cloud Technologies 18</p> <p>1.5 Computer Aided Technologies in Manufacturing 20</p> <p>1.6 Limitation of the Existing Manufacturing Engineering Curriculum 22</p> <p>1.7 Course Framework for Digital Manufacturing 24</p> <p>1.8 Design of the CAD/CAM Course 25</p> <p>1.8.1 Existing Design of the CAD/CAM Course 26</p> <p>1.8.2 Customization of the CAD/CAM Course 27</p> <p>1.9 Summary 28</p> <p>1.10 Review Questions 29</p> <p>References 30</p> <p><b>Part I Computer Aided Design (CAD) </b><b>35</b></p> <p><b>2 Computer Aided Geometric Modelling </b><b>37</b></p> <p>2.1 Introduction 37</p> <p>2.2 Basic Elements in Geometry 38</p> <p>2.2.1 Coordinate Systems 39</p> <p>2.2.2 Reference Points, Lines, and Planes 40</p> <p>2.2.3 Coordinate Transformation of Points 43</p> <p>2.2.4 Coordinate Transformation of Objects 43</p> <p>2.3 Representation of Shapes 53</p> <p>2.3.1 Basic Data Structure 54</p> <p>2.3.2 Curvy Geometric Elements 56</p> <p>2.3.3 Euler–Poincare Law for Solids 63</p> <p>2.4 Basic Modelling Methods 63</p> <p>2.4.1 Wireframe Modelling 63</p> <p>2.4.2 Surface Modelling 64</p> <p>2.4.3 Boundary Surface Modelling (B-Rep) 65</p> <p>2.4.4 Space Decomposition 67</p> <p>2.4.5 Solid Modelling 68</p> <p>2.5 Feature-Based Modelling with Design Intents 74</p> <p>2.6 Interactive Feature-Based Modelling Using CAD Tools 77</p> <p>2.7 Summary 80</p> <p>2.8 Modelling Problems 81</p> <p>References 83</p> <p><b>3 Knowledge-Based Engineering </b><b>85</b></p> <p>3.1 Generative Model in Engineering Design 85</p> <p>3.2 Knowledge-Based Engineering 85</p> <p>3.3 Parametric Modelling 87</p> <p>3.3.1 Define Basic Geometric Elements 89</p> <p>3.3.2 Types of Parameters 95</p> <p>3.3.3 Geometric Constraints and Relations 99</p> <p>3.4 Design Intents 101</p> <p>3.4.1 Default Location and Orientation of a Part 101</p> <p>3.4.2 First Sketch Plane 103</p> <p>3.5 Design Equations 103</p> <p>3.6 Design Tables 105</p> <p>3.7 Configurations as Part Properties 111</p> <p>3.8 Design Tables in Assembly Models 114</p> <p>3.9 Design Tables in Applications 116</p> <p>3.10 Design Templates 117</p> <p>3.11 Summary 119</p> <p>3.12 Design Problems 119</p> <p>References 122</p> <p><b>4 Platform Technologies </b><b>125</b></p> <p>4.1 Concurrent Engineering (CE) 125</p> <p>4.1.1 Brief History 125</p> <p>4.1.2 Needs of CE 125</p> <p>4.1.3 Challenges of CE Practice 128</p> <p>4.1.4 Concurrent Engineering (CE) and Continuous Improvement (CI) 128</p> <p>4.2 Platform Technologies 130</p> <p>4.3 Modularization 130</p> <p>4.4 Product Platforms 132</p> <p>4.5 Product Variants and Platform Technologies 135</p> <p>4.6 Fundamentals to Platform Technologies 138</p> <p>4.7 Design Procedure of Product Platforms 142</p> <p>4.8 Modularization of Products 142</p> <p>4.8.1 Classification of Functional Requirements (FRs) 143</p> <p>4.8.2 Module-Based Product Platforms 143</p> <p>4.8.3 Scale-Based Product Family 145</p> <p>4.8.4 Top-Down and Bottom-Up Approaches 146</p> <p>4.9 Platform Leveraging in CI 149</p> <p>4.10 Evaluation of Product Platforms 153</p> <p>4.10.1 Step 1. Representation of a Modularized Platform 155</p> <p>4.10.2 Step 2. Mapping a Modular Architecture for Robot Configurations 156</p> <p>4.10.3 Step 3. Determine Evaluation Criteria of a Product Platform 156</p> <p>4.10.4 Step 4. Evaluate Platform Solutions 159</p> <p>4.11 Computer Aided Tools (CAD) for Platform Technologies 160</p> <p>4.11.1 Modelling Techniques of Product Variants 163</p> <p>4.11.2 Design Toolboxes 163</p> <p>4.11.3 Custom Design Libraries 164</p> <p>4.12 Summary 165</p> <p>4.13 Design Projects 166</p> <p>References 169</p> <p><b>5 Computer Aided Reverse Engineering </b><b>173</b></p> <p>5.1 Introduction 173</p> <p>5.2 RE as Design Methodology 175</p> <p>5.3 RE Procedure 178</p> <p>5.4 Digital Modelling 179</p> <p>5.4.1 Types of Digital Models 180</p> <p>5.4.2 Surface Reconstruction 181</p> <p>5.4.3 Algorithms for Surface Reconstruction 181</p> <p>5.4.4 Limitations of Existing Algorithms 182</p> <p>5.4.5 Data Flow in Surface Reconstruction 183</p> <p>5.4.6 Surface Reconstruction Algorithm 184</p> <p>5.4.7 Implementation Examples 186</p> <p>5.5 Hardware Systems for Data Acquisition 188</p> <p>5.5.1 Classification of Hardware Systems 191</p> <p>5.5.2 Positioning of Data Acquisition Devices 197</p> <p>5.5.3 Control of Scanning Processes 199</p> <p>5.5.4 Available Hardware Systems 200</p> <p>5.6 Software Systems for Data Processing 201</p> <p>5.6.1 Data Filtering 201</p> <p>5.6.2 Data Registration and Integration 204</p> <p>5.6.3 Feature Detection 205</p> <p>5.6.4 Surface Reconstruction 205</p> <p>5.6.5 Surface Simplification 205</p> <p>5.6.6 Segmentation 206</p> <p>5.6.7 Available Software Tools 206</p> <p>5.7 Typical Manufacturing Applications 206</p> <p>5.8 Computer Aided Reverse Engineering (CARE) 208</p> <p>5.8.1 Recap to Convert Sensed Data into Polygonal Models 209</p> <p>5.8.2 ScanTo3D for Generation of Parametric Models 211</p> <p>5.8.3 RE of Assembled Products 212</p> <p>5.9 RE – Trend of Development 213</p> <p>5.10 Summary 213</p> <p>5.11 Design Project 214</p> <p>References 215</p> <p><b>6 Computer Aided Machine Design </b><b>219</b></p> <p>6.1 Introduction 219</p> <p>6.2 General Functional Requirements (FRs) of Machines 222</p> <p>6.3 Fundamentals of Machine Design 223</p> <p>6.3.1 Link Types 223</p> <p>6.3.2 Joint Types and Degrees of Freedom (DoFs) 223</p> <p>6.3.3 Kinematic Chains 225</p> <p>6.3.4 Mobility of Mechanical Systems 226</p> <p>6.4 Kinematic Synthesis 230</p> <p>6.4.1 Type Synthesis 230</p> <p>6.4.2 Number Synthesis 230</p> <p>6.4.3 Dimensional Synthesis 232</p> <p>6.5 Kinematics 233</p> <p>6.5.1 Positions of Particles, Links, and Bodies in 2D and 3D Space 233</p> <p>6.5.2 Motions of Particles, Links, and Bodies 235</p> <p>6.5.3 Vector-Loop Method for Motion Analysis of a Plane Mechanism 240</p> <p>6.5.4 Kinematic Modelling Based on Denavit–Hartenberg (D-H) Parameters 246</p> <p>6.5.5 Jacobian Matrix for Velocity Relations 248</p> <p>6.6 Dynamic Modelling 259</p> <p>6.6.1 Inertia and Moments of Inertia 259</p> <p>6.6.2 Newton–Euler Formulation 261</p> <p>6.6.3 Lagrangian Method 266</p> <p>6.7 Kinematic and Dynamics Modelling in Virtual Design 269</p> <p>6.7.1 Motion Simulation 269</p> <p>6.7.2 Model Preparation 271</p> <p>6.7.3 Creation of a Simulation Model 271</p> <p>6.7.4 Define Motion Variables 274</p> <p>6.7.5 Setting Simulation Parameters 275</p> <p>6.7.6 Run Simulation and Visualize Motion 275</p> <p>6.7.7 Analyse Simulation Data 276</p> <p>6.7.8 Structural Simulation Using Motion Loads 277</p> <p>6.8 Summary 278</p> <p>6.9 Design Project 279</p> <p>References 279</p> <p><b>Part II Computer Aided Manufacturing (CAM) </b><b>281</b></p> <p><b>7 Group Technology and Cellular Manufacturing </b><b>283</b></p> <p>7.1 Introduction 283</p> <p>7.2 Manufacturing System and Components 283</p> <p>7.2.1 Machine Tools 287</p> <p>7.2.2 Material Handling Tools 289</p> <p>7.2.3 Fixtures 289</p> <p>7.2.4 Assembling Systems and Others 290</p> <p>7.3 Layouts of Manufacturing Systems 290</p> <p>7.3.1 Job Shops 290</p> <p>7.3.2 Flow Shops 291</p> <p>7.3.3 Project Shops 292</p> <p>7.3.4 Continuous Production 292</p> <p>7.3.5 Cellular Manufacturing 294</p> <p>7.3.6 Flexible Manufacturing System (FMS) 295</p> <p>7.3.7 Distributed Manufacturing and Virtual Manufacturing 297</p> <p>7.3.8 Hardware Reconfiguration Versus System Layout 302</p> <p>7.4 Group Technology (GT) 303</p> <p>7.4.1 Visual Inspection 304</p> <p>7.4.2 Product Classification and Coding 305</p> <p>7.4.3 Production Flow Analysis 317</p> <p>7.5 Cellular Manufacturing 320</p> <p>7.6 Summary 325</p> <p>7.7 Design Problems 326</p> <p>References 328</p> <p><b>8 Computer Aided Fixture Design </b><b>331</b></p> <p>8.1 Introduction 331</p> <p>8.2 Fixtures in Processes of Discrete Manufacturing 333</p> <p>8.3 Fixtures and Jigs 335</p> <p>8.4 Functional Requirements (FRs) of Fixtures 337</p> <p>8.5 Fundamentals of Fixture Design 338</p> <p>8.5.1 3-2-1 Principle 339</p> <p>8.5.2 Axioms for Geometric Control 339</p> <p>8.5.3 Axioms for Dimensional Control 341</p> <p>8.5.4 Axioms for Mechanical Control 341</p> <p>8.5.5 Fixturing Cylindrical Workpiece 342</p> <p>8.5.6 Kinematic and Dynamic Analysis 342</p> <p>8.6 Types and Elements of Fixture Systems 344</p> <p>8.6.1 Supports 345</p> <p>8.6.2 Types of Fixture Systems 345</p> <p>8.6.3 Locators 347</p> <p>8.6.4 Clamps 348</p> <p>8.6.5 Flexible Fixtures 348</p> <p>8.7 Procedure of Fixture Design 354</p> <p>8.8 Computer Aided Fixture Design 357</p> <p>8.8.1 Fixture Design Library 357</p> <p>8.8.2 Interference Detection 359</p> <p>8.8.3 Accessibility Analysis 360</p> <p>8.8.4 Analysis of Deformation and Accuracy 361</p> <p>8.9 Summary 361</p> <p>8.10 Design Projects 362</p> <p>References 363</p> <p><b>9 Computer Aided Manufacturing (CAM) </b><b>367</b></p> <p>9.1 Introduction 367</p> <p>9.1.1 Human and Machines in Manufacturing 368</p> <p>9.1.2 Automation in Manufacturing 371</p> <p>9.1.3 Automated Decision-Making Supports 372</p> <p>9.1.4 Automation in Manufacturing Execution Systems (MESs) 373</p> <p>9.2 Computer Aided Manufacturing (CAM) 375</p> <p>9.2.1 Numerically Controlled (NC) Machine Tools 375</p> <p>9.2.2 Industrial Robots 376</p> <p>9.2.3 Automated Storage and Retrieval Systems (ASRS) 376</p> <p>9.2.4 Flexible Fixture Systems (FFSs) 377</p> <p>9.2.5 Coordinate Measurement Machines (CMMs) 377</p> <p>9.2.6 Automated Material Handling Systems (AMHSs) 378</p> <p>9.3 Numerical Control (NC) Machine Tools 378</p> <p>9.3.1 Basics of Numerical Control (NC) 380</p> <p>9.4 Machining Processes 382</p> <p>9.5 Fundamentals of Machining Programming 384</p> <p>9.5.1 Procedure of Machining Programming 384</p> <p>9.5.2 World Axis Standards 385</p> <p>9.5.3 Default Coordinate Planes 387</p> <p>9.5.4 Part Reference Zero (PRZ) 390</p> <p>9.5.5 Absolute and Incremental Coordinates 390</p> <p>9.5.6 Types of Motion Paths 392</p> <p>9.5.7 Programming Methods 394</p> <p>9.5.8 Automatically Programmed Tools (APT) 396</p> <p>9.6 Computer Aided Manufacturing 398</p> <p>9.6.1 Main Tasks of CNC Programming 398</p> <p>9.6.2 Motion of Cutting Tools 398</p> <p>9.6.3 Algorithms in NC Programming 399</p> <p>9.6.4 Program Structure 400</p> <p>9.6.5 Programming Language G-Code 401</p> <p>9.7 Example of CAM Tool – HSMWorks 405</p> <p>9.8 Summary 407</p> <p>9.9 Design Problems 408</p> <p>9.10 Design Project 409</p> <p>References 410</p> <p><b>10 Simulation of Manufacturing Processes </b><b>413</b></p> <p>10.1 Introduction 413</p> <p>10.2 Manufacturing Processes 413</p> <p>10.3 Shaping Processes 416</p> <p>10.4 Manufacturing Processes – Designing and Planning 417</p> <p>10.5 Procedure of Manufacturing Processes Planning 418</p> <p>10.6 Casting Processes 420</p> <p>10.6.1 Casting Materials and Products 420</p> <p>10.6.2 Fundamental of Casting Processes 422</p> <p>10.6.3 Design for Manufacturing (DFM) for Casting Processes 429</p> <p>10.6.4 Steps in Casting Processes 430</p> <p>10.6.5 Components in a Casting System 430</p> <p>10.6.6 Simulation of Casting Processes 432</p> <p>10.7 Injection Moulding Processes 432</p> <p>10.7.1 Injection Moulding Machine 433</p> <p>10.7.2 Steps in the Injection Moulding Process 434</p> <p>10.7.3 Temperature and Pressure for Moldability 435</p> <p>10.7.4 Procedure of the Injection Moulding System 436</p> <p>10.7.5 Other Design Considerations 437</p> <p>10.8 Mould Filling Analysis 439</p> <p>10.8.1 Mould Defects 440</p> <p>10.9 Mould Flow Analysis Tool – SolidWorks Plastics 443</p> <p>10.10 Summary 447</p> <p>10.11 Design Project 447</p> <p>References 448</p> <p><b>11 Computer Aided Design of Tools, Dies, and Moulds (TDMs) </b><b>451</b></p> <p>11.1 Introduction 451</p> <p>11.2 Overview of Tools, Dies, and Industrial Moulds (TDMs) 453</p> <p>11.3 Roles of TDM Industry in Manufacturing 454</p> <p>11.4 General Requirements of TDM 456</p> <p>11.4.1 Cost Factors 457</p> <p>11.4.2 Lead-Time Factors 457</p> <p>11.4.3 Complexity 458</p> <p>11.4.4 Precision 458</p> <p>11.4.5 Quality 459</p> <p>11.4.6 Materials 459</p> <p>11.5 Tooling for Injection Moulding 459</p> <p>11.6 Design of Injection Moulding Systems 460</p> <p>11.6.1 Number of Cavities 460</p> <p>11.6.2 Runner Systems 462</p> <p>11.6.3 Geometry of Runners 462</p> <p>11.6.4 Layout of Runners 464</p> <p>11.6.5 Branched Runners 465</p> <p>11.6.6 Sprue Design 466</p> <p>11.6.7 Design of Gating System 468</p> <p>11.6.8 Design of Ejection System 471</p> <p>11.6.9 Design of the Cooling System 472</p> <p>11.6.10 Moulding Cycle Times 474</p> <p>11.7 Computer Aided Mould Design 475</p> <p>11.7.1 Main Components of Mould 475</p> <p>11.7.2 Mould Tool in SolidWorks 475</p> <p>11.7.3 Design Procedure 476</p> <p>11.7.4 Compensation of Shrinkage 477</p> <p>11.7.5 Draft Analysis 477</p> <p>11.7.6 Parting Line and Shut-off Planes 479</p> <p>11.7.7 Parting Surfaces 479</p> <p>11.7.8 Splitting Mould Components 481</p> <p>11.7.9 Assembly and Visualization of Moulds 481</p> <p>11.8 Computer Aided Mould Analysis 483</p> <p>11.8.1 Thermoformable Materials and Products 483</p> <p>11.8.2 Compression Moulding 483</p> <p>11.8.3 Simulation of Compression Moulding 484</p> <p>11.8.4 Predicating Elongation in SolidWorks 487</p> <p>11.9 Summary 492</p> <p>11.10 Design Projects 493</p> <p>References 493</p> <p><b>Part III System Integration </b><b>497</b></p> <p><b>12 Digital Manufacturing (DM) </b><b>499</b></p> <p>12.1 Introduction 499</p> <p>12.2 Historical Development 500</p> <p>12.3 Functional Requirements (FRs) of Digital Manufacturing 502</p> <p>12.3.1 Data Availability, Accessibility, and Information Transparency 502</p> <p>12.3.2 Integration 503</p> <p>12.3.3 High-Level Decision-Making Supports 503</p> <p>12.3.4 Decentralization 504</p> <p>12.3.5 Reconfigurability, Modularity, and Composability 504</p> <p>12.3.6 Resiliency 504</p> <p>12.3.7 Sustainability 505</p> <p>12.3.8 Evaluation Metrics 505</p> <p>12.4 System Entropy and Complexity 505</p> <p>12.5 System Architecture 507</p> <p>12.5.1 NIST Enterprise Architecture 507</p> <p>12.5.2 DM Enterprise Architecture 508</p> <p>12.5.3 Digital Technologies in Different Domains 511</p> <p>12.5.4 Characteristics of Internet of Things (IoT) Infrastructure 512</p> <p>12.5.5 Lifecycle and Evolution of EA 516</p> <p>12.6 Hardware Solutions 517</p> <p>12.7 Big Data Analytics (BDA) 518</p> <p>12.7.1 Big Data in DM 519</p> <p>12.7.2 Big Data Analytics (BDA) 521</p> <p>12.7.3 Big Data Analytics (BDA) for Digital Manufacturing 521</p> <p>12.8 Computer Simulation in DM – Simio 522</p> <p>12.8.1 Modelling Paradigms 523</p> <p>12.8.2 Object Types and Classes 523</p> <p>12.8.3 Intelligence – Objects, Events, Logic, Processes, Process Steps, and Elements 525</p> <p>12.8.4 Case Study of Modelling and Simulation in Simio 526</p> <p>12.9 Summary 528</p> <p>12.10 Design Projects 531</p> <p>References 532</p> <p><b>13 Direct and Additive Manufacturing </b><b>535</b></p> <p>13.1 Introduction 535</p> <p>13.2 Overview of Additive Manufacturing 536</p> <p>13.2.1 Historical Development 536</p> <p>13.2.2 Applications 536</p> <p>13.2.3 Advantages and Disadvantages 540</p> <p>13.3 Types of AM Techniques 542</p> <p>13.3.1 Vat Photo-Polymerization 543</p> <p>13.3.2 Powder Bed Fusion 544</p> <p>13.3.3 Binder Jetting 545</p> <p>13.3.4 Material Jetting 545</p> <p>13.3.5 Material Extrusion 546</p> <p>13.3.6 Sheet Lamination 547</p> <p>13.3.7 Directed Energy Deposition 547</p> <p>13.4 AM Processes 549</p> <p>13.4.1 Preparation of CAD Models 550</p> <p>13.4.2 Preparation of Tessellated Models 550</p> <p>13.4.3 Slicing Planning and Visualization 551</p> <p>13.4.4 Machine Setups 552</p> <p>13.4.5 Building Process 552</p> <p>13.4.6 Post-Processing 553</p> <p>13.4.7 Verification and Validation 554</p> <p>13.5 Design for Additive Manufacturing (DfAM) 554</p> <p>13.5.1 Selective Materials and AM Processes 555</p> <p>13.5.2 Considerations of Adopting AM Technologies 555</p> <p>13.5.3 Part Features 557</p> <p>13.5.4 Support Structures 557</p> <p>13.5.5 Process Parameters 558</p> <p>13.6 Summary 559</p> <p>13.7 Design Project 560</p> <p>References 560</p> <p><b>14 Design for Sustainability (D4S) </b><b>563</b></p> <p>14.1 Introduction 563</p> <p>14.2 Sustainable Manufacturing 563</p> <p>14.3 Drivers for Sustainability 565</p> <p>14.3.1 Shortage of Natural Resources 566</p> <p>14.3.2 Population Increase 568</p> <p>14.3.3 Global Warming 569</p> <p>14.3.4 Pollution 571</p> <p>14.3.5 Globalized Economy 571</p> <p>14.4 Manufacturing and Sustainability 572</p> <p>14.4.1 Natural Resources for Manufacturing 572</p> <p>14.4.2 Population Increase and Manufacturing 573</p> <p>14.4.3 Global Warming and Manufacturing 574</p> <p>14.4.4 Pollution and Manufacturing 574</p> <p>14.4.5 Manufacturing in a Globalized Economy 574</p> <p>14.5 Metrics for Sustainable Manufacturing 575</p> <p>14.6 Reconfigurability for Sustainability 580</p> <p>14.7 Lean Production for Sustainability 582</p> <p>14.8 Lifecycle Assessment (LCA) and Design for Sustainability (D4S) 584</p> <p>14.9 Continuous Improvement for Sustainability 585</p> <p>14.10 Main Environmental Impact Factors 585</p> <p>14.10.1 Carbon Footprint 586</p> <p>14.10.2 Total Energy 586</p> <p>14.10.3 Air Acidification 586</p> <p>14.10.4 Water Eutrophication 586</p> <p>14.11 Computer Aided Tools – SolidWorks Sustainability 586</p> <p>14.11.1 Material Library 587</p> <p>14.11.2 Manufacturing Processes and Regions 588</p> <p>14.11.3 Transportation and Use 591</p> <p>14.11.4 Material Comparison Tool 592</p> <p>14.11.5 Costing Analysis in SolidWorks 594</p> <p>14.12 Summary 594</p> <p>14.13 Design Project 596</p> <p>References 596</p> <p>Index 601</p>
<p><b>Zhuming Bi, PhD,</b> is a Professor in the Department of Civil and Mechanical Engineering at Purdue University in Fort Wayne, Indiana, USA. He has over 30 years of experience in Computer Aided Design and Manufacturing (CAD/CAM). <p><b>Xiaoqin Wang, PhD,</b> is an Associate Professor in the School of Mechanical Engineering at Nanjing University of Science and Technology in Nanjing, China. Her research background is in Computer Aided Design, Dynamics, Vibration Impact, and Noise Control. She has been teaching computer-aided design and drawing for 20 years.
<p><b>Computer Aided Design and Manufacturing</b> <p><b>Broad coverage of digital product creation, from design to manufacture and process optimization</b> <p>This book addresses the need to provide up-to-date coverage of current CAD/CAM usage and implementation. It covers, in one source, the entire design-to-manufacture process, reflecting the industry trend to further integrate CAD and CAM into a single, unified process. It also updates the computer aided design theory and methods in modern manufacturing systems and examines the most advanced computer-aided tools used in digital manufacturing. <p><i>Computer Aided Design and Manufacturing</i> consists of three parts. The first part on Computer Aided Design (CAD) offers the chapters on Computer Aided Geometric Modelling; Knowledge-Based Engineering; Platform Technologies; Computer Aided Reverse Engineering; and Computer Aided Machine Design. The second part on Computer Aided Manufacturing (CAM) covers Group Technology and Cellular Manufacturing; Computer Aided Fixture Design; Computer Aided Manufacturing (CAM); Simulation of Manufacturing Processes; and Computer Aided Design of Tools, Dies, and Moulds (TDMs). The final part includes the chapters on Digital Manufacturing (DM); Direct and Additive Manufacturing and Design for Sustainability (D4S). The book is also featured for <ul> <li>being uniquely structured to classify and align engineering disciplines and computer aided technologies from the perspective of the design needs in whole product life cycles,</li> <li>utilizing a comprehensive Solidworks package (add-ins, toolbox, and library) to showcase the most critical functionalities of modern computer aided tools, and</li> <li>presenting real-world design projects and case studies so that readers can gain CAD and CAM problem-solving skills upon the CAD/CAM theory.</li> </ul> <p><i>Computer Aided Design and Manufacturing</i> is an ideal textbook for undergraduate and graduate students in mechanical engineering, manufacturing engineering, and industrial engineering. It can also be used as a technical reference for researchers and engineers in mechanical and manufacturing engineering or computer-aided technologies.

Diese Produkte könnten Sie auch interessieren:

Neutron Applications in Earth, Energy and Environmental Sciences
Neutron Applications in Earth, Energy and Environmental Sciences
von: Liyuan Liang, Romano Rinaldi, Helmut Schober
PDF ebook
149,79 €
Nanobioelectronics - for Electronics, Biology, and Medicine
Nanobioelectronics - for Electronics, Biology, and Medicine
von: Andreas Offenhäusser, Ross Rinaldi
PDF ebook
96,29 €
Autonomous Robots
Autonomous Robots
von: Farbod Fahimi
PDF ebook
117,69 €